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Introduction

The study of the convergence (existence) and the
evaluation of improper integrals has received much attention.
In this paper, we shall consider conditions under which the
convergence of a particular class of improper integrals can
be guaranteed. In particular, the integrand is not
specified in closed form but is evaluéted in terms of the
unique solution to an associated differential equation. The

improper integral can be written as

[o2]

f g(¢(t,xo,to),t)dt (1)

t
0

where g 1s a specified scalar function of the n-vector ¢ and
the time t. The function ¢ represents the solution to the

vector differential equation
22 =z x = £(x,t) (2)

with the initial condition

x(t) = x_. (3)

o

f(x,t) is a function with values in the Euclidean space Rn
which is defined on some set

S xI-= {(x,t)eR™x R | ||x|]|<r,t>8}. It is assumed that
f(x,t) is sufficiently smooth on 8 x I such that for any

erS and any tOeI there exists for all tzto a unique

solution in S. The possibility of a finite escape time 1in

(6,») is excluded. Also x = 0 is the trivial solution of



(2) so that f£(0,t) = 0 on I. It is assumed that the scalar
valued function g in (1) is continuous on S x I and
g(0,t) = 0 on T.

As a motivation to this study, it has been conjectured
that a necessary and sufficient condition for the conver-

gence of (1) for an arbitrary xOsS and t_el is that (2) be

asymptotically stable in S x I. That this 1s not a
sufficient condition for the convergence of (1) is readily
observed by considering the fbllowing example. Let (1) and

(2) be given by

| o2y ar (4)
0O

and

% = —x3 , x(0) = x_, (5)

where ¢(t) is the solution to (5). The trivial solution of
(5) is uniformly asymptotically stable in the large; however,
it is observed that the integral (4) does not converge for
any nonzero X
Our goal in this work is to obtain sufficient con-
ditions for the convergence of (1) under rather weak con-
ditions. Several results guaranteeing this convergence are
presented and proved. The relations of the theorems to the

stability properties of (2) are discussed. Finally we con-

sider the use of (1) as a measure of the performance of (2).



Results on Convergence

In what follows, the main results of the paper are
presented.
Theorem: Let g(¢,t) be non-negative on S x I. Let
¢(t,xo,to)+0 as toe for any x eS and any t_eI. Let Vix,t)
be a non-negative decrescent scalar valued function with
continuous first partial derivatives on S x I, and
V(0,t) = 0 on I. If there exists a p>0 such that

V(x,t) + pg(x,t)s 0 on 8 x I, (6)

then (1) converges for any x €S and any toaI.

11

Proof: V(X,t) + pg(x,t)s 0 on S x I. Let x ¢(t,xo,to)

for some XoeS and tOeI. Then for all t = to’

T(e(t), t) + og(o(t), t) < O.

Integrating over the interval [tO,T] we obtain
T

V(e(T), T) - V(x_,t) + o jt g(e(t), t)dt < 0.
O

Since T»» implies that ¢(T)»0 and V(x,t) is continuous and
decrescent, then T-»e implies V(¢(T), T)»0. In other words,
for any specified €30, there is sufficiently large T,

depending on e,x _, and t_, such that for all T>T!
T

1 €
fg(¢(t>, t)dt < S V(x ,t.) - S
t

o
Thus, for any T > to



T
1
/og(¢(t), B)dt < = V(xg,b,).
to T

Since g(x,t) is non-negative, j’g(¢(t), t)dt is obviously
t

0
monotonic with T. Thus, we assert that
,3T
| &(e(t), t)at
't
o)

converges as T»e, Q.E.D,
From the Theorem, we can obtain the following
corollary.

Corollary 1. Let g(¢,t) be positive definite on RxI. Let

V(x,t) be a positive definite decrescent scalar function
with continuous first partial derivatives on R"xI. Also
V(0,t) = 0 on I, and V(x,t)»= as ||x]|]>> uniformly on I.
If there exists a p » o such that

V(x,t) + pg(x,t) < 0 on R" x I (7

then (1) converges for any XoeRn and any tOeI.

Proof: Consider V(x,t) as a Liapunov function. From (7),
V(x,t) is obviously negative definite, so that x = 0 is
uniformly asymptotically stable in the large and
¢(t,xo,to)+0 as t»= [1]. Thus the conditions of the theorem
are satisfied with § = R". Q.E.D.

If £ and g are not explicit functions of time, then

(1) and (2) are given by

‘[ g(¢(t))dt (8)

o]



and

x = £f(x) , x(0) = X (9)
where, without loss of generality, we have taken to=0, As

before, ¢(t) denotes the unique solution of (9). For this
case the following corollary is obtained.

Corollary 2. Let g(¢) be non-negative. Let V(x) be a

positive definite scalar valued function with continuous

first partial ddrivatives and V(0)= 0. Define 2, as the

region where V(x) < &, and assume that Q2 is bounded. If

there exists a p > 0 such that

V(x) + pg(x) < 0 on 2, (10)

and the only invariant set [3] contained in

o, N{x|V(x) + pg(x) = 0} is the trivial solution x = 0, then
the integral in (8) converges for any X e,

Proof: Consider V(x) as a Liapunov function. From (10) and
the hypothesis, it follows, using a result of LaSalle [3],

that x

0 is asymptotically stable in @, 6 and ¢(t,xo,to)+0

2

as to>«, Thus, the conditfions of the Theorem are satisfied

Il

with S Q Q.E.D.

Q‘.
Although Corollaries 1 and 2 are less general than

the Theorem, they are more useful in applications since one

does not have to check that ¢(t)>0 as t»e,



Discussion

We return to the conjecture that asymptotic stability
of the origin of the differential equation (2) is necessary
and sufficient condition for the convergence of the improper
integral (1). Asymptotic stability is not a necessary con-
dition for the convergence of (1) since asymptotic stability
is not implied by the hypothesis of the Theorem; only quasi-
asymptotic stability [1] is implied. Referring to the ex-
ample, asymptotic stablility is obviously not sufficient.
Thus the conjecture is incorrect in both respects.

These results have implications in several areas. Not
only have conditions for the convergence of (1) been given,
but an upper bound on the integral has been established.
This upper bound has been used by McClamroch and Aggarwal
[4] to deduce the sensitivity characteristics of (1) with
respect to certain types of functional changes in the
differential equation (2)..

These results also have application in asymptotic
control theory. Here one 1s interested in determining a
control u within some class U such that a performance
measure given by (1) is minimized and the differential
equation

x = f(x,t,u) (11

is satisfied. Unless the convergence of (1) for some



ueU can be guaranteed the use of such a performance measure
is not justified., This idea has been considered previously

by Bellman and Bucy [2] for the case where (11) is linear.



l'

REFERENCES

H. A. Antosiewicz. "A Survey of Liapunov's Second
Method," Ann. Math. Studies, 41, 141-166 (1958).

R. Bellman and R. Bucy. "Asymptotic Control Theory,"
J. SIAM Control, 2, 11-18 (1964).

J. Lasalle and S. Lefschetz, Stability by Liapunov's
Direct Method. Academic Press, 1961, p. 58.

N. H. MeClamroch and J. K. Aggarwal. "On the Existence
of Upper Bounds on the Performance Index of Nonlinear
Systems," J. Franklin Inst. (to appear).



